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Abstract

We propose a wavelet based multiresolution Hartree–Fock method suitable for quasi two-dimensional extended

systems. Intended applications are metallic slabs and excitons confined in quantum wells of semiconductor heterostruc-

tures. The method uses a periodic supercell approach, which allows for an incorporation of single impurities. Special

emphasis has been laid on low rank tensor product decompositions of orbitals, which take into account the strongly

anisotropic character of these systems in one direction. Wavelets provide hierarchical bases that can be adapted to

the anisotropic behaviour of the orbitals. We discuss some technical features related to the wavelet expansion of Ewald

potentials, which are used to describe the interaction between particles. Due to the vanishing moment property of wave-

lets, we can achieve sparse representations for the quantities involved. An illustrative example for this are jellium slabs,

where we discuss various sparsity features of matrices related to Coulomb and exchange potentials. Benchmark calcu-

lations for a homogeneous electron gas finally demonstrate the computational feasibility and numerical accuracy of our

approach.
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MSC: 65R20; 65T60; 81Q05

Keywords: Wavelets; Hartree–Fock; Supercell; Ewald potential; Jellium slab
1. Introduction

A challenging problem for computational physics and chemistry are strongly anisotropic systems like
surfaces of solids or thin layers of various types of materials. Such kind of systems became of considerable

technological interest, we just want to mention semiconductor heterostructures, carbon nanotubes or
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Langmuir–Blodgett films of organic molecules. Many interesting applications in quantum many-particle

theory arise from the physics of surfaces and layers. An intrisic feature of these systems is that they extend

fairly homogeneously into the directions parallel to the boundary and show a strongly anisotropic behav-

iour in the direction perpendicular to it. It is this quasi two-dimensional character which makes them dif-

ficult to handle in computations. Wavelet based multiresolution analysis provides numerical tools [7,8,10],
which might help to improve the efficiency of computational many-particle methods for these systems. In

solid state physics, wavelets have been intensively studied in the context of density functional theory (DFT)

[3,22], see e.g. [14,25,42,60] for some recent developments. Within the present work, we discuss a multires-

olution Hartree–Fock (HF) approach to quasi two-dimensional extended systems. Special emphasis has

been laid on low rank tensor product approximations of HF orbitals. This has been accomplished by con-

tracting the wavelet basis in the homogeneous directions according to some systematic contraction scheme,

which incorporates basic physical insights. Such kind of construction allows us to combine the advantages

of systematic basis sets like wavelets with basis sets highly adapted to the properties of the system under
consideration. The latter approach has been proven to be extremely successful in quantum chemistry, where

Gaussian-type basis functions enable accurate HF calculations with comparatively small basis sets [26].

Although we limit ourselves in the present work to the HF method, it should be mentioned that from a

computational point of view this method has much in common with more sophisticated many-particle the-

ories, which enable a treatment of electron correlations. It is due to the exchange operator that HF requires

the computation of two-electron integrals with respect to the Coulomb interaction. These integrals serve as

a starting point for post HF calculations. The standard post HF methods in quantum chemistry, like many-

body perturbation theory or the coupled cluster method, require no additional two-electron integrals beyond
those already present from a HF calculation. This is not the case for our envisaged treatment of electron

correlations within multiresolution analysis [18,19,36]. However, we can make use of the algorithms, al-

ready implemented for the HF method, to calculate the additional two-electron integrals. In this sense

HF serves as a benchmark problem for the development of more sophisticated many-particle methods using

wavelet bases.

Conventional metallic surfaces attracted considerable interest in computational physics and have been

considered as an important benchmark problem for DFT. A simplified approach to metallic surfaces

and slabs is the jellium model where nuclear charges are smeared out into a uniform positive background
charge-density, which abruptly discontinues at the surface. Starting with Lang and Kohn�s seminal paper

[32], jellium surfaces have been extensively studied for various kinds of density functionals

[13,24,33,45,46,63]. They proved to be of considerable significance for the development of new density func-

tionals. Therefore a strong need for accurate many-body benchmark calculations exists. Remarkably, there

are essentially only two many-particle methods that can deal with jellium surfaces, namely quantum Monte

Carlo (QMC) [1,34] and the Fermi hypernetted-chain method [30,31]. It exists an ongoing controversy con-

cerning the accuracy of these calculations [41]. Significant deviations with respect to results obtained from

DFT calculations [2,62] exist and presently the reasons for these discrepancies have not been completely
settled.

Conduction electrons in semiconductor heterostructures provide an analogous problem on a different

energy- and length-scale. The characteristic length-scales of semiconductor layers are between one to

two orders of magnitude larger than the typical atomic length-scale. Presently, this makes atomistic

many-particle calculations almost impracticable. Nevertheless quantum effects play a prominant role for

example in the design of optoelectronic devices [9]. Using the concept of quasi-particles with effective

masses, interesting optical properties of semiconductors can be described by effective model Hamiltonians

rather similar to those encountered for metallic systems. A new feature arises from the presence of a second
species of quasi-particles, these are the holes associated to conduction electrons. Due to comparable effec-

tive masses of both species, the Born–Oppenheimer approximation is not applicable and a simultaneous

treatment of electrons and holes in many-particle calculations becomes necessary. These excitonic systems
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share several common features with ordinary atoms and molecules [50]. In excitonic systems, electrons and

holes interact via modified Coulomb interactions. The corresponding Schrödinger equation looks very

much like for a pure many-electron system except that electrons and holes attract each other. For nano-

structured materials, the diameter of excitons becomes comparable to the thickness of a layer, which means

that the properties of these systems lie somewhere in between that of free two- and three-dimensional exci-
tons [9]. Therefore these excitons provide interesting two-scale problems, that can be handled similar to

jellium slabs. Various types of computational methods have been already applied to excitonic systems.

Many-particle effects were treated by DFT [43,47,61] or by variational methods [6,28,29].
2. Supercell approach to electronic structure calculations

The standard approach to HF electronic structure calculations for infinite periodic systems is based on
Bloch orbitals [44]. These orbitals are defined according to Bloch�s theorem by their translational symmetry.

Furthermore, Bloch orbitals can be used within many-body perturbation theory [4,57,58] and coupled clus-

ter theory [27] for the treatment of electron correlations in extended systems. However, the computational

effort is rather large so that applications are presently restricted to polymers. Localized Wannier orbitals

provide an alternative to delocalized Bloch orbitals. Taking advantage of the exponential decay of Wannier

orbitals for insulators and semiconductors, it is possible to perform HF [55] and correlated calculations [56]

for extended systems with these orbitals.

The continuous spectrum of the HF Hamiltonian for Bloch orbitals requires an efficient computation of
integrals in reciprocal space. These integrals are restricted to the first Brillouin zone (BZ) for semiconduc-

tors and to the region inside the Fermi surface for metals. Different types of quadrature schemes have been

developed for metals, semiconductors and insulators [39,44]. An alternative to quadrature schemes in reci-

procal space are real space supercells. There exists a one-to-one correspondence between quadrature formu-

las in reciprocal space and real space supercells [16,17,40]. The supercell constitutes of a cluster of unit cells

that is periodically extended into the whole space. Within this setting, the nonrelativistic supercell Hamil-

tonian in atomic units becomes
HSC ¼
XN
i¼1

� 1

2
Di þ V extðriÞ

� �
þ
X
R

X
i<j

1

jri � rj � Rj ; ð1Þ
where R are supercell lattice vectors, which map the original supercell into its periodic images. Only the N

electrons assigned to the original supercell are treated explicitly and their interactions with electrons in

other supercells are formally taken into account via the lattice sum in front of the Coulomb potential. It

is however well known that this lattice sum does not converge and has to be replaced by an Ewald potential.

Therefore, supercell Hamiltonians can be treated in electronic structure calculations almost like finite

systems. The energy per supercell is given by the multiple integral
ESC ¼
Z
SC

d3r1 � � �
Z
SC

d3rN W
�ðr1; . . . ; rNÞHSCWðr1; . . . ; rN Þ; ð2Þ
with corresponding normalization condition for the wavefunction
Z
SC

d3r1 � � �
Z
SC

d3rN W
�ðr1; . . . ; rN ÞWðr1; . . . ; rN Þ ¼ 1: ð3Þ
We have adopted the supercell approach for two reasons. In our envisaged applications, we have to deal

with excitons that are coupled to impurities or confined into quantum dots. Such kind of additional struc-

tures destroy the symmetry of the original primitive lattice. Therefore, the standard reciprocal space
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method is no longer applicable. Instead, the supercell approach provides a natural setting in this case, be-

cause of the local character of these additional structures in real space. For insulators and semiconductors

with single impurities, the supercell approach became a standard method in solid state physics, see e.g.

[15,21,35,44]. The other reason is related to a possible extension of our method to correlated wavefunctions.

In previous papers [18,19,36], we have discussed a product ansatz for wavelet approximations of correlated
wavefunctions. This ansatz provides a sparse representation of electron correlations in real space, which can

be efficiently exploited in the supercell approach. Furthermore, we can benefit from previous work within

the QMC method, where the supercell approach has been extensively applied to jellium models and semi-

conductors [20].

It is decisive for practical applications to obtain fast convergence of the properties of a system with

respect to the size of the supercell. Due to the one-to-one correspondence mentioned above, we can benefit

in the supercell approach from optimized quadrature schemes in reciprocal space [15,16]. Furthermore, the

symmetry properties of many-electron wavefunctions [48,49] can be exploited in order to improve conver-
gence with respect to the supercell size. For metallic systems, however, the convergence is rather slow and in

order to get rid of finite size errors it becomes necessary to extrapolate the results to an infinitely large

supercell. Such kind of procedures have been extensively applied in QMC calculations for jellium models

[20]. Despite its fundamental importance, we do not want to further pursue this subject in the present work.

Instead, we are focusing on efficient and accurate numerical methods for solving the HF equation of a

supercell with fixed size.

2.1. Basic definitions and notations for periodic systems

Before we can proceed with our discussion of the HF method, it is necessary to define a few basic quan-

tities and to discuss some useful modifications of multiresolution analysis in the periodic supercell setting.

We assume in the following that the system has an orthorhombic unit cell where the lattice vectors
A1 ¼ ð2u1 ; 0; 0Þ; A2 ¼ ð0; 2u2 ; 0Þ; A3 ¼ ð0; 0; 2u3Þ; ð4Þ

are compatible with the underlying dyadic wavelet grid. According to standard conventions, we take reci-
procal lattice vectors
B1 ¼ 2pð2�u1 ; 0; 0Þ; B2 ¼ 2pð0; 2�u2 ; 0Þ; B3 ¼ 2pð0; 0; 2�u3Þ: ð5Þ

Dyadic lattice vectors are mainly chosen for notational convenience and in more general cases it is possible

to use different scaling factors along each direction of the lattice. The calculation of the Coulomb integrals

requires only minor modifications in this case. Relaxing the constraint of orthogonal lattice vectors is more

problematic and needs some fundamental modifications in the calculation of elementary one- and two-
electron integrals. For our envisaged systems, however, this case seems to be of minor importance and

we refrain from a further discussion of this topic. Another comment concerning our intended applications

is appropriate at this place. In Section 1 we have mentioned several systems like jellium slabs, which require

periodicity only in two dimensions. Nevertheless, we have based our approach on a three dimensional peri-

odic lattice. Its is straightforward for such kind of systems to obtain an effective periodicity in two dimen-

sions by choosing |A1| sufficiently large compared to the thickness of the slab.

The supercell lattice vectors are defined as integer multiples of unit cell lattice vectors
D1 ¼ N 1A1; D2 ¼ N 2A2; D3 ¼ N 3A3; ð6Þ
with length, sectional area and volume of the supercell given by
LSC ¼ N 12
u1 ; ASC ¼ N 2N 32

u2þu3 ; V SC ¼ LSCASC: ð7Þ
For further usage, we also define translation vectors with respect to the supercell
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Rn ¼
X
i

niDi; ni 2 Z; ð8Þ
and the corresponding wave vectors
k ¼
X
i

ni
N i

Bi; ni 2 Z; ð9Þ
consistent with the reciprocal lattice of the supercell.

Two different types of tensor products can be used in order to obtain multivariate wavelets in R3 from an

univariate wavelet basis in R. In the first case, standard tensor products of univariate wavelets are used to

define a multivariate wavelet basis. Within such kind of approach, combinations of wavelets on different

levels occur and the tensor products have no well defined levels any more. These wavelet tensor products

are therefore denoted as anisotropic wavelets. In the second case mixed tensor products of univariate wave-
lets and scaling functions on the same level are used to construct the multivariate wavelet basis. The result-

ing tensor products have well defined levels and are denoted as isotropic wavelets. Due to the quasi

two-dimensional character of our systems, we use a mixture of both types of tensor products. Since we

can expect that the HF orbitals behave rather uniform in the directions parallel to the slab, it is reasonable

to use isotropic wavelets in these directions. In order to take into account the strongly anisotropic behav-

iour in the perpendicular direction, we have ultimately chosen anisotropic tensor products of univariate

wavelets perpendicular to the slab with isotropic tensor products in the parallel directions. Further details

concerning these tensor products, as well as some basic facts about wavelets can be found in Appendix A.
At next we want to adopt the wavelet basis to the periodic structure of the supercell. According to the

tensor product ansatz for the multivariate wavelet basis it is obvious that we can limit our discussion to an

univariate wavelet basis fwl;aiðxiÞ : l; ai 2 Zg in the ith direction. To each wavelet wl,a(xi), we assign a lattice

coordinate 2�lai that specifies its location in real space. The set of wavelets fwl;aiðxiÞ : ai 2 Zg on a fixed

level l span a regular one dimensional lattice with lattice constant 2�l. Depending on the specific size of

the unit cell, we have to distinguish two cases. In the first case, the wavelet level l satisfies the inequality

lP �ui, which means that the distance between centers of neighbouring wavelets is smaller or equal to

the unit cell size in the corresponding direction. Whereas in the second case, the reverse inequality
l < �ui holds. Compatibility between supercell and wavelet lattice requires that only those wavelet levels

l, which satisfy the consistency condition
2uiþlN i 2 N; ð10Þ
can be used in the periodic setting. To get a standardized notation that comprises both cases, we introduce

the integers
Ml;i :¼ 2minfuiþl;0gNi; ð11Þ

and corresponding index sets
Xl;i :¼ fn : 0 6 n 6 Ml;i � 1g: ð12Þ

Before we consider periodic wavelets, it is convenient to define a wavelet basis attached to the supercell.

For this we introduce translation vectors within the supercell
tl;n :¼
X
i

ni2
�minflþui ;0gAi; ni 2 Xl;i; ð13Þ
and wave vectors
j :¼
X
i

ni
N i

Bi; ni 2 Xl;i; ð14Þ
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restricted to the first BZ of the reciprocal lattice. By construction, these wave vectors reduce to the zero wave

vector in the first BZ of the reciprocal supercell lattice. This condition can be modified in such a way that the

wave vectors reduce to an arbitrary reference vector [16,48,49]. In the following, we adopt the notation that

Greek characters denote momenta restricted to the first BZ, whereas Latin characters k,q are used for

unconstraint momenta (9). In the remaining part of this section, we again limit our discussion to one lattice
direction. Since it is of no significance to specify the direction explicitly by denoting the index i for a specific

component of vectors (13) and (14) or index sets (11) and (12), it is skipped in the following for the sake of

notational simplicity. For example, instead of writing tl,m,i for the i�th component of the vector tl,m, we use

the shorthand notation tl,m in the following. We can now define univariate supercell wavelets
wj
l;cðxÞ :¼

1ffiffiffiffiffiffi
Ml

p
X
m2Xl

eijtl;mwl;cðx� tl;mÞ ¼
1ffiffiffiffiffiffi
Ml

p
X
m2Xl

eijtl;mwl;2ltl;mþcðxÞ; ð15Þ
for wave vectors j through appropriate linear combinations of wavelets within the supercell. The transla-

tion parameters c of the supercell wavelets belong to the index set
Kl ¼ c : 0 6 c < 2maxfuþl;0g� �
; ð16Þ
which means that the lattice coordinate 2�lc of the wavelet wl, c is within the first unit cell. This construction

is schematically depicted in Fig. 1. For a biorthogonal wavelet basis, we can derive orthogonality relations

between supercell wavelets and their dual counterparts
Z
dxwj0

j;aðxÞ~w
j�
l;bðxÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffi
MjMl

p X
p2Xj

X
q2Xl

eiðj
0tj;p�jtl;qÞ

Z
dxwj;2jtj;pþaðxÞ~wl;2ltl;qþbðxÞ

¼ dj;lda;b
Mj

X
p2Xj

eiðj
0�jÞtj;p ¼ dj;j0dj;lda;b: ð17Þ
0,0ψ

−1,0ψ

−2,0ψ

super cell

unit cell

0,3
0,2

0,1

t

t
t

t

t
t

t

Fig. 1. Supercell wavelets generated by linear combinations of wavelets within a supercell of size Ni = 4 and ui = 1.
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In the second line, we have used the orthogonality relation for biorthogonal wavelets (see Appendix A for

details). For j = l, this lead us to the equation
tj;p � tj;q ¼ 2�jðb� aÞ; ð18Þ

which can be only satisfied for p = q and a = b, since by definition the left-hand side of Eq. (18) corresponds

for p 6¼ q to a shift from one unit cell to another. Obviously this is inconsistent with the definition of param-

eters a,b where we have assumed that the associated lattice coordinates are located in the first unit cell. The

product between components of wave and translation vectors yields
ðj0 � jÞtj;p ¼ 2p
n0 � n
N

2�minfjþu;0gp ¼ 2p
n0 � n
Mj

p; ð19Þ
from which we immediately obtain the orthogonality relation (17).

Periodic wavelets are constructed by applying the periodic extension operator R to supercell wavelets
Rwj
l;cðxÞ :¼

X
m2Z

wj
l;cðx� RmÞ ¼

X
m2Z

wj
l;2lRmþcðxÞ: ð20Þ
If a reduction to a nonzero wave vector in the first BZ of the reciprocal supercell lattice is required

[16,48,49], the definition (20) has to be modified by introducing an additional phase factor. Orthogonality

relations for periodic wavelets are obtained with respect to dual supercell wavelets
Z
dxRwj0

j;aðxÞ~w
j�
l;bðxÞ ¼ dj;j0dj;lda;b: ð21Þ
Further details concerning refinement relations for periodic wavelets are given Appendix B. Plane waves

consistent with periodic boundary conditions can be conveniently expanded in the periodic wavelet basis
1ffiffiffiffi
D

p eikx ¼
X
j

X
a2Kj

bkj;aRw
kjj
j;aðxÞ; ð22Þ
where the level dependent projection of a wave vector k into the first BZ is given by the common residue
kjj ¼ kmod
2pMj

2uN

� �
: ð23Þ
The periodic wavelet coefficients
bkj;a ¼ 2�maxfjþu;0g=2ei2
�jka ~̂w

�
ð2�jkÞ; ð24Þ
can be directly evaluated using the Fourier transform of the dual mother wavelet ~̂wðxÞ :¼
R
dxe�ixx~wðxÞ.
3. Discrete Hartree–Fock equations for quasi two-dimensional systems

According to our envisaged applications, we have developed a discretization scheme for 3D-periodic HF

equations, which is based on the assumption that the system is strongly inhomogeneous in one (perpendic-
ular) direction and fairly homogeneous in the other two (parallel) directions. Within this scheme, we define

a decomposition of the periodic HF orbitals into local components /j
nðrÞ with compact support in a neigh-

bourhood of the supercell. The periodic HF orbitals can be recovered by applying the periodic extension

operator
R/j
nðrÞ ¼

X
m2Z3

/j
nðr� RmÞ: ð25Þ
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Due to the quasi two-dimensional character of the systems, we expect that the coupling between the

perpendicular and parallel directions in the Hamiltonian remains rather weak. The local components are

therefore expressed as linear combinations
/j
nðrÞ ¼

XK
i¼1

X
a

Cj
n;i;af

j
a;iðrÞ

 !
ð26Þ
of tensor product functions
fja;iðrÞ ¼ wj1
a ðxÞUjk

i ðy; zÞ; ð27Þ
where univariate supercell wavelets wj1
a are taken in the perpendicular direction. To simplify our notation,

we use a single Greek wavelet index (wa) in formulas where details concerning type, level and location of

wavelets are not relevant. In the parallel directions, basis functions
U
jk
i ðy; zÞ ¼

X
a

d
jk
i;ac

jk
a ðy; zÞ ð28Þ
are obtained by contractions of isotropic supercell wavelets c
jk
a . It is reasonable to assume that the Kro-

necker rank K of the tensor product decomposition for the HF orbitals (26) can be kept small and almost

independent of the size of the supercell through an appropriate choice of the contracted basis functions

(28). In order to simplify the construction of the Fock matrix, a common set of basis functions in the par-

allel directions (28) has been chosen which does not depend on the perpendicular component j1 of the wave
vector. Two possible approaches for these basis functions seem to be possible. In the first approach, the

basis functions (28) are obtained from HF orbitals of the corresponding homogeneous system in either

two or three dimensions. An even simpler choice would be a contraction of wavelets using plane waves

or other appropriate systematic basis functions. The second approach consists in a self-consistent solution
of the HF equations with respect to these parameters. According to the tensor product decomposition of

the orbitals (26), this requires the treatment of a nonlinear optimization problem rather similar to the multi-

configuration self-consistent field method.

From a computational point of view it is convenient to express expectation values with respect to the

supercell in terms of local components (26) of the HF orbitals. This can be accomplished by introducing

a finite version of the periodic extension operator
RM/
j
nðrÞ :¼

X
m2M3

/j
nðr� RmÞ; ð29Þ
whereM3 corresponds to a cube in Z3, centred at the origin, which containsM3 lattice points. For HF orbi-

tals, the normalization condition with respect to the supercell
Z
V SC

d3rR/j�
n ðrÞR/j0

n0 ðrÞ ¼ dj;j0dn;n0 ð30Þ
can be expressed through unbounded integrals by considering an ensemble of supercells
Z
V SC

d3rR/j�
n ðrÞR/j0

n0 ðrÞ ¼
1

M3

Z
R3

d3rRM/
j�
n ðrÞRM/

j0

n0 ðrÞ þOðM�1Þ

¼
Z

R3

d3r/j�
n ðrÞRM/

j0

n0 ðrÞ þOðM�1Þ: ð31Þ
Replacing the periodic extension operator (25) by its finite variant (29), we approximate the supercell inte-

gral (30) by an average over a finite cube of supercells with surface error of O(M�1). Taking the limit
M ! 1, we obtain an alternative version
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Z
R3

d3r/j�
n ðrÞR/j0

n0 ðrÞ ¼ dj;j0dn;n0 ð32Þ
of the normalization condition (30) in terms of unbounded integrals with respect to local components (26)

of the HF orbitals.

The total HF energy can be split into a sum of one-particle, Coulomb and exchange contributions
EHF ¼ E0 þ Ec þ Ex; ð33Þ

where we have to express each part in terms of local components (26) of the orbitals. This can be achieved
using the same type of argument as for the normalization condition (32). The one-particle contribution

becomes
E0 ¼2
X
j;n

Z
V SC

d3rR/j�
n ðrÞ � 1

2
Dþ V extðrÞ

� �
R/j

nðrÞ ð34Þ

¼ 2

M3

X
j;n

Z
R3

d3rRM/
j�
n ðrÞ � 1

2
Dþ V extðrÞ

� �
RM/

j
nðrÞ þOðM�1Þ

¼2
X
j;n

Z
R3

d3r/j�
n ðrÞ � 1

2
Dþ V extðrÞ

� �
RM/

j
nðrÞ þOðM�1Þ; ð35Þ
where, in the second line, we have used the translational symmetry of the Hamiltonian. Analogous expres-

sions can be obtained for the Coulomb
Ec ¼ 2
X
j;j0

X
n;n0

Z
V SC

Z
V SC

d3rd3r0R/j�
n ðrÞR/j

nðrÞUEwaldðr; r0ÞR/j0�
n0 ðr0ÞR/j0

n0 ðr0Þ

¼ 2

M6

X
j;j0

X
n;n0

Z
R3

Z
R3

d3rd3r0RM/
j�
n ðrÞRM/

j
nðrÞUEwaldðr; r0ÞRM/

j0�
n0 ðr0ÞRM/

j0

n0 ðr0Þ þOðM�1Þ

¼ 2
X
j;j0

X
n;n0

Z
R3

Z
R3

d3rd3r0/j�
n ðrÞRM/

j
nðrÞUEwaldðr; r0Þ/j0�

n0 ðr0ÞRM/
j0

n0 ðr0Þ þOðM�1Þ; ð36Þ
and exchange
Ex ¼ �
X
j;j0

X
n;n0

Z
V SC

Z
V SC

d3rd3r0R/j0�
n0 ðrÞR/j

nðrÞUEwaldðr; r0ÞR/j�
n ðr0ÞR/j0

n0 ðr0Þ

¼ �
X
j;j0

X
n;n0

Z
R3

Z
R3

d3rd3r0/j0�
n0 ðrÞRM/

j
nðrÞUEwaldðr; r0Þ/j�

n ðr0ÞRM/
j0

n0 ðr0Þ þOðM�1Þ ð37Þ
parts of the HF energy. Here we have already introduced an Ewald potential, which provides the necessary

modification of the Coulomb interaction in order to get the two-electron integrals converged. The Ewald

potential is discussed in more detail in Section 5. It only remains to perform the limit M ! 1 to derive

the final expressions for the HF expectation value of the energy
E0 ¼ 2
X
j;n

Z
R3

d3r/j�
n ðrÞ � 1

2
Dþ V extðrÞ

� �
R/j

nðrÞ; ð38Þ

Ec ¼ 2
X
j;j0

X
n;n0

Z
R3

Z
R3

d3rd3r0/j�
n ðrÞR/j

nðrÞUEwaldðr; r0Þ/j0�
n0 ðr0ÞR/j0

n0 ðr0Þ; ð39Þ
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Ex ¼ �
X
j;j0

X
n;n0

Z
R3

Z
R3

d3rd3r0/j0�
n0 ðrÞR/j

nðrÞUEwaldðr; r0Þ/j�
n ðr0ÞR/j0

n0 ðr0Þ: ð40Þ
Variation of the HF energy (33) with respect to the orbital coefficients Cj
n;i;a yields the discrete closed shell

HF equation
X
j;b

hjij;ab þ 2Jj
ij;ab � Kj

ij;ab

h i
Cj

n;j;b ¼ �jnC
j
n;i;a; ð41Þ
where the Fock matrix consists of one-particle
hjij;ab ¼
Z
R3

d3r fj�a;iðrÞ � 1

2
Dþ V extðrÞ

� �
Rfjb;jðrÞ; ð42Þ
Coulomb
Jj
ij;ab ¼

X
j0 ;n0

Z
R3

Z
R3

d3rd3r0 fj�a;iðrÞRfjb;jðrÞUEwaldðr; r0Þ/j0�
n0 ðr0ÞR/j0

n0 ðr0Þ; ð43Þ
and exchange
Kj
ij;ab ¼

X
j0 ;n0

Z
R3

Z
R3

d3rd3r0 fj�a;iðrÞR/j0

n0 ðrÞUEwaldðr; r0Þ/j0�
n0 ðr0ÞRfjb;jðr0Þ: ð44Þ
matrices. The strongly anisotropic character of these equations is expressed through the double indices a,i
where we assume card{a} � card{i} for the cardinalities of the corresponding index sets.
4. Construction of the Fock matrix

From a formal point of view our treatment of the HF method is completely standard and the only mul-

tiscale feature that has entered into our discussion so far is the tensor product decomposition of the orbitals
(26). At next we want to discuss some applications of multiresolution analysis to the construction of the

Fock matrix, which is the time determining step for the solution of the discrete HF equation (41). Coulomb

and exchange matrices can be computed in an efficient way using sparse nonstandard representations of

Ewald potentials in the wavelet basis. Concerning a detailed discussion of certain sparsity properties related

to Ewald potentials, we refer to Section 6 below. The nonstandard representation of integral operators has

been introduced into multiresolution analysis by Beylkin, Coifman and Rokhlin [7,8]. A typical feature of

this representation is that couplings between wavelets on different levels are replaced by couplings between

wavelets and scaling functions on the same level. It provides an efficient scheme for the calculation of two-
electron integrals, which has been discussed in detail in [18]. Due to the relatively small number of degrees

of freedom in the parallel directions, we advocate a two-step procedure. The first step involves the construc-

tion of intermediate nonstandard Coulomb
ðp;qÞJ
jkj

0
k

stuv;j;a ¼
Z
R3

Z
R3

d3rd3r0wðpÞ
j;a ðxÞU

j0k�
s ðrkÞRU

j0k
t ðrkÞUEwaldðr; r0ÞU

jk�
u ðr0kÞRU

jk
v ðr0kÞw

ðqÞ
j;0 ðx0Þ; ð45Þ
and exchange integrals
ðp;qÞK
jkj

0
k

stuv;j;a ¼
Z
R3

Z
R3

d3rd3r0wðpÞ
j;a ðxÞU

j0k�
s ðrkÞRU

jk
t ðrkÞUEwaldðr; r0ÞU

jk�
u ðr0kÞRU

j0k
v ðr0kÞw

ðqÞ
j;0 ðx0Þ; ð46Þ
which remain fixed during the self-consistent solution of the HF equation. We demonstrate in Section 6

below, that these integrals are sparse with respect to the index a, due to the vanishing moment property
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of the wavelet basis. It should be noticed that within the nonstandard scheme, pure scaling function inte-

grals (p = q = 0) are required on the coarsest level only.

For the calculation of intermediate Coulomb and exchange integrals, we have to expand products of ba-

sis functions in the parallel directions within the wavelet basis. Such kind of expansion requires wavelet

coupling coefficients between supercell and periodic wavelets
g
jk;j

0
k

a;b;l :¼
Z
R2

d2rk c
jk�
a ðrkÞRc

j0k
b ðrkÞ~clðrkÞ; ð47Þ
and sums involving contraction coefficients (28)
g
jk;j

0
k

st;l :¼
X
a;b

d
jk�
s;a d

j0k
t;bg

jk;j
0
k

a;b;l : ð48Þ
Computation of wavelet coupling coefficients and their properties has been described in detail in [18]. With

these coefficients at hand, the wavelet expansion of a product of basis functions is given by
U
jk�
s ðrkÞRU

j0k
t ðrkÞ ¼

X
a

g
jk;j

0
k

st;a caðrkÞ: ð49Þ
The Ewald potential can be represented in the nonstandard form
UEwaldðr1; r2Þ ¼
Xjmax

j¼j0

X
p;q

0X
a;b

hcðpÞj;a jUEwaldjcðqÞj;b i~c
ðpÞ
j;a ðr1Þ~c

ðqÞ
j;b ðr2Þ; ð50Þ
where the wavelet matrix elements of the Ewald potential are given by
hcðpÞj;a jUEwaldjcðqÞj;b i ¼
Z
R3

Z
R3

d3r1 d
3r2 c

ðpÞ
j;a ðr1ÞUEwaldðr1; r2ÞcðqÞj;b ðr2Þ: ð51Þ
A prime at the sum over p,q indicates that pure scaling function matrix elements contribute on the coarsest

level only. We use the same symbol c for isotropic two and three-dimensional wavelets. The latter are given

by tensor products of univariate and isotropic two-dimensional wavelets, i.e.
cðpÞj;a ðrÞ ¼ wðp1Þ
j;a1

ðxÞcðpkÞj;ak
ðrkÞ; ð52Þ
with obvious relations between the parameters p and p1, pi characterizing the wavelet types on both sides

of the equation, see Appendix A for further details. Inserting the wavelet expansion (50) into the integrals

(45) and (46), reveals after some algebraic manipulations, the following expressions for intermediate
Coulomb
ðp1;q1ÞJ
jkj

0
k

stuv;j;a1¼
ðp1;q1Þ�J

jkj
0
k

stuv;j;a1 þ
Xjmax�j

n¼1

X
b

ðp1;q1ÞHn
b�2na1

ð0;0Þ�J
jkj

0
k

stuv;jþn;b; ð53Þ
and exchange integrals
ðp1;q1ÞK
jkj

0
k

stuv;j;a1¼
ðp1;q1Þ �K

jkj
0
k

stuv;j;a1 þ
Xjmax�j

n¼1

X
b

ðp1;q1ÞHn
b�2na1

ð0;0Þ �K
jkj

0
k

stuv;jþn;b; ð54Þ
where the individual terms
ðp1;q1Þ�J
jkj

0
k

stuv;j;a1 ¼
X
pk;qk

0X
ak

X
bk

g
j0k;j

0
k

st;j;pk;akþbk
g
jk;jk
uv;j;qk;bk

2
4

3
5hcðpÞj;a jUEwaldjcðqÞj;0 i; ð55Þ
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ðp1;q1Þ �K
jkj

0
k

stuv;j;a1 ¼
X
pk;qk

0X
ak

X
bk

g
j0k;jk
st;j;pk;akþbk

g
jk;j

0
k

uv;j;qk;bk

2
4

3
5hcðpÞj;a jUEwaldjcðqÞj;0 i; ð56Þ
correspond to sums with contributions from the same level only. The derivation of expressions (53) and (54)

uses the biorthogonality of the wavelet basis and multiscale relations for bilinear forms of univariate wave-

lets, see Appendix A for further details.

In each iteration of the self-consistent solution of the HF equation, the Fock matrix has to be con-

structed from intermediate Coulomb (45) and exchange (46) integrals. This requires the evaluation of uni-

variate wavelet coupling coefficients in the perpendicular direction
gjj
0

a;b;m :¼
Z

dxwj�
a ðxÞRwj0

b ðxÞ~wmðxÞ; ð57Þ
and their contractions with orbital coefficients
gj
0j1

n0 ;u;b;m :¼
X
a

Cj0�
n0 ;u;ag

j0
1
j1

a;b;m; gj1j
0

n0 ;u;a;m :¼
X
b

Cj0

n0;u;bg
j1j01
a;b;m; gj

0j0

n0 ;uv;m :¼
X
a

Cj0�
n0 ;u;ag

j0
1
j0

n0 ;v;a;m: ð58Þ
The computational complexity for the evaluation of the coefficients (57) and (58) can be estimated with re-

spect to size of the univariate wavelet basis within a unit cell. It should be emphasized that we take a given

supercell with a fixed number of electrons and consider the computational complexity with respect to a

refinement of the wavelet basis. Within a unit cell, the cardinality of the univariate wavelet basis
cardfwag ¼ OðLÞ with L ¼ 2jmax ; ð59Þ

increases exponentially with the finest wavelet level jmax. Straightforward combinatorial arguments [19],

based on the hierarchical structure and compact supports of wavelets, show that the cardinality of wavelet

coupling coefficients (57)
cardfgjj0a;b;mg ¼ OðL logðLÞ2Þ; ð60Þ
increases almost linear with the number of univariate wavelets in a unit cell. The estimated cardinalities of

the contracted coefficients (58)
cardfgj1j0n0 ;u;a;mg ¼ OðKL logðLÞÞ; ð61Þ
cardfgj0j0n0 ;uv;mg ¼ OðK2LÞ; ð62Þ
also depend on the Kronecker rank K, which is assumed to be small, i.e. K � L. It is possible to calculate

these coefficients with O(K2L log(L)2) computational complexity.

For the evaluation of Coulomb
Jj
st;ab ¼

X
j0 ;n0

X
u;v

X
m

X
p1;q1

0X
c

X
d

gj
0j0

n0 ;uv;m;p1;cþdg
j1j1
a;b;m;q1;d

" #
ðp1;q1ÞJ

j0kjk
stuv;m;c; ð63Þ
and exchange
Kj
st;ab ¼

X
j0;n0

X
u;v

X
m

X
p1;q1

0X
c

X
d

gj1j
0

n0 ;u;a;m;p1;cþdg
j0j1
n0 ;v;b;m;q1;d

" #
ðp1;q1ÞK

jkj
0
k

suvt;m;c; ð64Þ
matrix elements further contractions of the coefficients (57) and (58) are required. In order to estimate

the computational complexity of the Fock matrix, we have assumed that the intermediate Coulomb and

exchange integrals (45) and (46) are sparse. Focusing on the sums in the square brackets, we obtain com-
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putational complexities of O(K4L log(L)2) and O(K4L2) for Coulomb and exchange matrix elements, respec-

tively. The L2 dependence of the exchange matrix elements is deminished by the exponential decay of the

exchange interaction, which has not been taken into account by our formal arguments. This topic is further

discussed in Section 6.
5. Wavelet representation of Ewald potentials

A standard approach to electronic structure calculations for periodic systems [20,55] is to replace the

Coulomb interaction in the Hamiltonian (1) by an Ewald potential
UEwaldðri; rjÞ ¼
X
R

erfcð
ffiffiffi
k

p
jri � rj � RjÞ

jri � rj � Rj þ 4p
V SZ

X
k6¼0

1

jkj2
e�

k2

4kþikðri�rjÞ � p
kV SZ

; ð65Þ
which takes into account the Coulomb interaction between an electron located at ri and another electron at

rj as well as with all the mirror images of the second electron located at rj + R in other supercells. In order

to make this sum converge, the interaction with a homogeneous background charge-density has to be

subtracted resulting in the Ewald potential (65). The parameter k > 0 can be adjusted to get a balanced con-
vergence of the real and reciprocal lattice sums. For the evaluation of elementary two-electron integrals

(51), we can rely on techniques originally developed for the Coulomb interaction in [18]. First we observe,

that due to the presence of absolute length-scales |Di|, cf. Eq. (8), no simple scaling relation between differ-

ent wavelet levels exists. Consequently, we cannot directly apply the iterative scheme of Beylkin, Dahmen

and Micchelli as outlined in [18] for the Coulomb interaction. However, it is straightforward to adapt the

Gaussian transform method to the first term in the Ewald potential. By a simple change of the integration

variable, we obtain the integral representation
erfcð
ffiffiffi
k

p
jr1 � r2 � RjÞ

jr1 � r2 � Rj ¼ 2ffiffiffi
p

p
Z 1ffiffi

k
p dt e�t2jr1�r2�Rj2 : ð66Þ
This means that we can apply the Gaussian transform method described in [18] by changing the integration

interval for the auxilliary variable t from ½0;1Þ to ½
ffiffiffi
k

p
;1Þ. Analogously to [18], we introduce the functions
GEwaldðj; ai; tÞ ¼ 2�j
X
Ri

Z
R

Z
R

dx1 dx2uðx1 � ai þ 2jRiÞe�ðx1�x2Þ22�2jt2uðx2Þ; ð67Þ
where the lattice sum factorizes into sums for single components Ri of the supercell vectors.

Once we have obtained the integrals for scaling functions on level j, refinement relations can be applied

in order to get the corresponding wavelet integrals on level j � 1. There is, however, a simple alternative to

compute wavelet integrals (p or q 6¼ 0) by means of the direct sum
hcðpÞj;a jUEwaldjcðqÞj;0 i ¼
X
R

Z
R3

Z
R3

d3r1 d
3r2 c

ðpÞ
j;a ðr1Þ

1

jr1 � r2 � Rj c
ðqÞ
j;0 ðr2Þ: ð68Þ
For wavelet integrals, the constant term in the Ewald potential (65) vanishes. This is due to the vanishing

moment property of wavelets. Therefore it is possible to take limk ! 0 for these integrals. In this limit, the
wavelet integral of the Ewald potential (51) is equivalent to the direct sum (68).

An interesting observation can be made for a specific choice of the coarsest level j0 in the wavelet basis,

where only a single grid point a = 0 remains in the supercell. For this case, all integrals (51) involving scal-

ing functions on the coarsest level exactly vanish
hcðpÞj0;0
jUEwaldjcð0Þj0;0

i ¼ 0; if 2j0þuiN i ¼ 1: ð69Þ
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In order to proof this statement, we first consider the function (67) for this specific choice of the parameters
GEwaldðj0; 0; tÞ ¼ 2�j0
X
n2Z

Z
R

Z
R

dx1 dx2w
ð0Þðx1 þ nÞe�ðx1�x2Þ22�2j0 t2wðpÞðx2Þ

¼ 2�j0

Z
R

Z
R

dx1 dx2 e�ðx1�x2Þ22�2j0 t2wðpÞðx2Þ ¼
ffiffiffi
p

p

t
d0;p; ð70Þ
where we have used the partition of unity 1 ¼
P

auðxþ aÞ, which applies for all kinds of scaling functions.

The integral with respect to the first term in the Ewald potential (65), therefore, becomes
Z
R3

Z
R3

d3r1 d
3r2 c

ðpÞ
j0;0

ðr1Þ
X
R

erfcð
ffiffiffi
k

p
jr1 � r2 � RjÞ

jr1 � r2 � Rj cð0Þj0;0
ðr2Þ ¼ 2pd0;p

Z 1ffiffi
k

p dt
1

t3
¼ p

k
d0;p; ð71Þ
which exactly cancels the contribution of the third term to the integral, since by definition we have

V SC ¼ 2�3j0 . A simple calculation for the Fourier integrals appearing in the reciprocal lattice sum
Z
R

dxei2
�j0 kxwð0ÞðxÞ ¼

X
a2Z

Z 1

0

dxei2
�j0 kxwð0Þðx� aÞ ¼

Z 1

0

dxei2pnx ¼ 0 if k ¼ 2j02pn 6¼ 0; ð72Þ
demonstrates that the second term also vanishes. The simple physical reason behind Eq. (69) is that the only

function, consistent with periodic boundary conditions, which can be represented by scaling functions

on level j0 is the constant function. By definition of the Ewald potential, however, the interaction energy

between an arbitrary and a constant charge distribution vanishes.
6. Multiresolution Hartree–Fock for jellium slabs

An essential feature of wavelet expansions is their sparsity due to the vanishing moment property. With-

in this section, we want to discuss some sparsity properties of intermediate Coulomb (45) and exchange (46)

integrals. For this it is necessary to study the asymptotic smoothness of the corresponding kernel functions,

which is conveniently done for jellium slabs, where orbital contributions in the parallel directions are

known explicitly. The HF orbitals factorize into simple products
R/kk
n ðrÞ ¼ Rnkkn ðxÞ

1ffiffiffiffiffiffiffiffi
ASC

p eikkrk ; ð73Þ
where the parallel directions correspond to plane waves. According to our tensor product ansatz (26), we

take a wavelet expansion
nkkn ðxÞ ¼
X
a

C
kk
n;awaðxÞ ð74Þ
for the perpendicular part of the orbitals. For our numerical studies, we have used the univariate biorthog-

onal wavelets with six vanishing moments of Sweldens [59], based on the interpolating scaling function of

Deslauriers and Dubuc [12]. Within our approach, we consider a supercell of the form shown in Fig. 2 with

unit cells extending over the whole width of the supercell in the direction perpendicular to the slab. Further-

more it is required that the width of the slab is small compared to the size of the supercell, i.e. S� D1. As a

consequence, we can assume that the perpendicular parts of the orbitals nkkn ðxÞ have compact supports with-

in the supercell and belong to momentum k1 = 0. The remaining dependence on momenta parallel to the

slab is due to the nonlocal exchange operator present in the HF equations. For this reason, there have been
no exact HF calculations for jellium surfaces or slabs reported in the literature. However, numerous

approximate HF calculations, following the pioneering work of Bardeen [5], have been published, see
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e.g. [23,37,51–54]. Within these calculations, the nonlocal exchange operator was approximated by a local

potential. As a consequence, the perpendicular part nn(x) does no longer depend on the momenta in the

parallel directions, which greatly simplifies the numerical treatment. The same type of argument applies

to DFT, where only local potentials appear in the Kohn-Sham equation.

After these introductory remarks, we want to consider intermediate Coulomb integrals (45) for jellium

slabs. It is straightforward in this case to integrate out the parallel directions analytically. The Fourier

representation of the Ewald potential leads to an effective Coulomb potential
UJ ðx; x0Þ ¼
1

A2
SC

Z
ASC

Z
ASC

dr2k dr
02
k UEwaldðr; r0Þ ¼

4p
V SC

X
k1 6¼0

eik1ðx�x0Þ

k21
; ð75Þ
which can be expressed through a reciprocal lattice sum in the perpendicular direction. Taking a wavelet

representation of this potential, we can identify the corresponding integrals with intermediate Coulomb

integrals (45)
ðs;tÞJ j;a ¼
Z

R

Z
R

dxdx0wðsÞ
j;aðxÞUJ ðx; x0ÞwðtÞ

j;0ðx0Þ ¼
4p
V SC

2�j
X
q1 6¼0

eia2
�jq1

q21
ŵ

ðsÞ
ð2�jq1Þ

�ŵ
ðtÞ
ð2�jq1Þ: ð76Þ
In order to study the analytic behaviour of the effective Coulomb potential (75) near the diagonal, we have

introduced an infrared cutoff parameter � and performed the transition to the continuum limit
UJ ðx; x0Þ �
2

ASC

Z ��

�1
dk1

eik1ðx�x0Þ

k21
þ
Z 1

�

dk1
eik1ðx�x0Þ

k21

" #

¼ 4

ASC

cosð�ðx� x0ÞÞ
�

þ ðx� x0ÞSið�ðx� x0ÞÞ � p
2
jx� x0j

� �
; ð77Þ
where the sum has been replaced by an integral. For our following considerations it is not essential to spec-

ify the parameter �. However, it seems to be convenient to require coincidence of the effective potential (75)

and its asymptotic expansion (77) along the diagonal. A simple computation using Eq. (75) yields
UJ ðx; xÞ ¼
pL2

SC

3V SC

; ð78Þ
from which we obtain, together with Eq. (77), the condition
� ¼ 12

pLSC

: ð79Þ
It should be emphasized that Eq. (77) is only valid asymptotically near the diagonal and does not yield the

correct continuum limit of the effective potential (75). The infrared cutoff introduces some arbitraryness in
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the long-range behaviour, which cannot be cured by an appropriate choice of the parameter �. This limi-

tation, however, does not affect our considerations, which just rely on the properties of the effective poten-

tial near the diagonal. It follows immediately from the Taylor series of the cosine and integral sine that the

first two terms in the asymptotic formula (77) contain only even powers of |x � x 0|. Therefore it is the linear

|x � x 0| term which determines the regularity of the effective potential and hence the sparsity of the inter-
mediate Coulomb integrals (45). Pure scaling function integrals (76) are well approximated by the asymp-

totic formula (77), as can be seen in Fig. 3(a) for different size of the supercell. This is due to the

interpolation property of our scaling functions. For intermediate Coulomb integrals involving wavelets,

a very fast decay can be observed beyond a certain characteristic value of the translation parameter a,

which is shown in Fig. 3(b)). Beyond this characteristic value, the supports of the wavelets or scaling func-
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Fig. 3. Intermediate Coulomb integrals for jellium slabs. (a) Asymptotic effective potential UJ(x,x + a) (dashed lines) and pure scaling

function integrals (0,0)J0,a for various size of the supercell (D2 = D3 = 80 bohr): (s) D1 = 80 bohr, (e) D1 = 160 bohr, (n) D1 = 240

bohr. (b) Different types of integrals: (n) j(0,0)J0,aj (pure scaling functions), (e) j(0,1)J0,aj (mixed scaling function and wavelet), (s) j
(1,1)J0,aj (pure wavelets) for a supercell of size D1 = 240 bohr, D2 = D3 = 80 bohr.
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tions in the integrand do not overlap anymore. Therefore, the diagonal cusp of the effective potential does

not contribute to the integrals.

Exchange potentials for jellium slabs can be treated along the same line as the Coulomb potential. The

kernel function of the effective exchange potential in the perpendicular direction
U
kkk

0
k

K ðx; x0Þ ¼ 1

A2
SC

Z
ASC

Z
ASC

dr2k dr
02
k e

�iðk0k�kkÞrkUEwaldðr; r0Þeiðk
0
k�kkÞr0k ¼ 4p

V SC

X
k1

0 eik1ðx�x0Þ

k21 þ jkk � k0
kj
2
; ð80Þ
however, depends on the momenta parallel to the slab. A prime at the reciprocal lattice sum indicates that it

restricts to those values of k1 for which the denominator does not vanish. Again, intermediate exchange
integrals (46) correspond to integrals of the wavelet representation of the kernel function (80)
ðs;tÞK
kkk

0
k

j;a ¼
Z

R

Z
R

dxdx0wðsÞ
j;aðxÞU

kkk
0
k

K ðx; x0ÞwðtÞ
j;0ðx0Þ

¼ 4p
V SC

2�j
X
q1

0 ei2
�jaq1

q21 þ jkk � k0
kj
2
ŵ

ðsÞ
ð2�jq1Þ

�ŵ
ðtÞ
ð2�jq1Þ: ð81Þ
In the following we assume jkk � k0
kj > 0, otherwise we would just recover the effective Coulomb poten-

tial (75). Due to the absence of an infrared divergence in this case, we can perform the continuum limit for

the effective exchange kernel (80)
U
kkk

0
k

K ðx; x0Þ ¼ 2p
ASC

e
�jkk�k0kjjx�x0 j

jkk � k0
kj

; ð82Þ
which has allready been stated in Bardeen�s early paper [5]. It can be seen from Fig. 4(a) that pure scaling
function integrals are very good approximated by the continuum Eq. (82) over the whole range of momenta

jkk � k0
kj. Close to the diagonal, the intermediate exchange integrals involving wavelets behave rather sim-

ilar to the Coulomb case, as it is shown in Fig. 4(b)). Obviously this is due to the fact that, up to a constant

term, both effective potentials have in leading order the same asymptotic behaviour close to the diagonal.

This leading order term �|x � x 0| determines the regularity of the effective potentials on the diagonal and

thereby the magnitude of the wavelet integrals. At larger distances from the diagonal, an exponential decay

can be observed depending on the total parallel momentum jkk � k0
kj.

Intermediate Coulomb and exchange integrals for jellium slabs can be directly computed using Eqs. (76)
and (81). The reciprocal lattice sums converge fast depending on the decay properties of the Fourier trans-

form of scaling function and wavelet. For more general cases, discussed in Section 3, the computation of

intermediate integrals is much more involved and leads to additional approximation errors. We just want to

draw attention on the wavelet products appearing in the expressions (45) and (46) for these integrals. It

should be emphasized however, that all approximation errors can be controlled in a systematic way, in or-

der to achieve certain absolute or relative accuracies. The jellium model provides an independent test for the

numerical accuracy of the general algorithm. Contributions from fine wavelet levels are truncated in Eq.

(53) at a level jmax. This constitutes the essential approximation error in our scheme, which is based on
the nonstandard evaluation of integrals. We have considered relative errors of intermediate exchange inte-

grals (46) at different wavelet levels j in the Frobenius norm
F ðj; jmaxÞ
2
:¼

P
kk;k

0
k

P
s;t

P
a

ðs;tÞK
kkk

0
k

j;a ðjmaxÞ � ðs;tÞK
kkk

0
k

j;a ð1Þ
��� ���2
P
kk;k

0
k

P
s;t

P
a

ðs;tÞK
kkk

0
k

j;a ð1Þ
��� ���2 ; ð83Þ
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Fig. 4. Intermediate exchange integrals for jellium slabs at different momenta jkk � k0
kj: (s) 0 bohr�1, (h) 0.13 bohr�1, (n) 0.26

bohr�1, ( + ) 0.52 bohr�1 (supercell size D1 = 240 bohr, D2 = D3 = 80 bohr). (a) Asymptotic effective potential U
kkk

0
k

K ðx; xþ aÞ (dashed
lines) and pure scaling function integrals ð0;0ÞK

kkk
0
k

0;a . (b) Mixed scaling function and wavelet integrals jð0;1ÞK
kkk

0
k

0;a j.
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where the argument jmax denotes the finest wavelet level in Eq. (53) and 1 indicates the use of Eq. (81).

Convergence of the relative Frobenius error with respect to jmax is very fast and almost independent of

j, as can be seen from Fig. 5. Typically, the errors are reduced by two orders of magnitude by incorporating

the next finer wavelet level in Eq. (53).

6.1. Numerical studies for a homogeneous electron gas

In order to study the numerical accuracy of our method, we considered the homogeneous electron
gas, which corresponds to the limiting case of a jellium slab filling up the whole supercell. Beside HF

energies at various electron densities, we have also considered Frobenius errors for the exchange part

of the Fock matrix. Due to the definition of the Ewald potential, the Coulomb part (43) of the Fock
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matrix vanishes for a homogeneous electron gas. The remaining exchange matrix elements (44) can be

directly obtained by first integrating out the parallel directions, analogously to the case of intermediate

integrals (81). Integration in the perpendicular direction yields a one dimensional reciprocal lattice sum,

which converges reasonably fast to be summed up numerically. A straightforward calculation, using the

effective kernel (80), yields the following expression for exchange matrix elements in a supercell wavelet

basis
ðs;tÞK
j1;kk
ja;lb ¼ 1

LSC

X
k0

Z
LSC

Z
LSC

dxdx0RwðsÞj1
j;a ðxÞ�eik01xU

kkk
0
k

K ðx; x0Þe�ik0
1
x0RwðtÞj1

l;b ðx0Þ

¼ 1

LSC

X
k0

Z
R

Z
R

dxdx0wðsÞj1
j;a ðxÞ�eik01xU

kkk
0
k

K ðx; x0Þe�ik0
1
x0wðtÞj1

l;b ðx0Þ

¼ Nj;l

X
k

0X
q1

0
dq1jj;j1dq1jl;j1

eið2
�ja�2�lbÞq1

jq1 � k01j
2 þ jkk � k0

kj
2
ŵ

ðsÞð2�jq1Þ
�ŵ

ðtÞð2�lq1Þ; ð84Þ
where the constant
Nj;l ¼
4p
V SC

2�maxfjþu1;0g=22�maxflþu1;0g=2 ð85Þ
depends on the wavelet levels j, l. In Fig. 6 we have plotted exchange matrix elements (84) versus the dis-

tance of the wavelet centers 2�j|a � b|. After an initial exponential decay, these matrix elements approach

almost constant values. This is due to the fact that the reduced one-particle density matrix for a homoge-
neous electron gas has an oscillatory behaviour and decays only algebraically with respect to the inter-

electron distance. At sufficiently large distances, the Coulomb singularity does not contribute to the integral

(84) any more. Therefore, it is the oscillatory behaviour of the density matrix which determines the mag-

nitude of exchange matrix elements at large distances [19]. Nevertheless, the absolute magnitudes of these
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Fig. 6. Exchange matrix elements (jkij = 0 bohr�1) for a homogeneous electron gas (84) with Fermi momentum kF = 2 bohr�1.

Different types of matrix elements are plotted versus the distance of the wavelet centers 2�jja � bj: (s) jð0;0ÞK0;0
ja;jbj (pure scaling

functions), (e) j(0,1)K0,0
ja,jbj (mixed scaling function and wavelet), (+) jð1;1ÞK0;0

ja;jbj (pure wavelets). Left and right parts of the figure

correspond to levels j = 0 and j = 1, respectively. A supercell (D1 = D2 = D3 = 32 bohr) which consists of a single unit cell has been

chosen.

Table 1

Hartree–Fock energies per electron (hartree) of a homogeneous electron gas at various densities and supercell size

rs Ne
a Db jc jmax

d EHF Error in EHF F(j, jmax)

0.51 114 4 1 2 3.72159451 6.7 · 10�6 3.6 · 10�5

1.02 114 8 0 1 0.78942459 2.2 · 10�6 3.6 · 10�5

2.05 114 16 �1 0 0.12686904 7.4 · 10�7 3.6 · 10�5

4.09 114 32 �2 �1 �0.00352628 2.9 · 10�7 3.6 · 10�5

The relative Frobenius errors (F) of the exchange part of the Fock matrix have been calculated according to Eq. (83).
a Number of electrons.
b Length of the supercell (bohr).
c Finest level of the wavelet expansion.
d Finest wavelet level in Eq. (53).
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matrix elements are rather small and decay very fast with respect to the wavelet level j, as can be seen from

Fig. 6.

We have calculated relative errors for the exchange matrix (44) in the Frobenius norm (83) together with

HF energies per electron at electron densities rs = 0.5,1,2, and 4 for supercells containing 114 electrons. It

can be seen from Table 1 that we obtain relative errors of �10�5 for the exchange matrix by choosing a

wavelet discretization comparable to the mean radius per electron rs. This corresponds to absolute errors

of �10�6 hartree for the energy per electron. The test calculations for a homogeneous electron gas demon-

strate the computational feasibility of our approach.
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7. Conclusions

Many interesting developments in modern physics and chemistry originate from the peculiar properties

of quasi two-dimensional systems. Due to their strongly anisotropic behaviour in one direction, these sys-

tems present a great challenge to numerical simulations. The inherent two-scale character of the problem
suggests an application of recently developed numerical techniques in multiresolution analysis. We have

studied a multiresolution HF approach to quasi two-dimensional systems based on wavelets and low rank

tensor product expansions. The method has been tailored for systems where the coupling between the

anisotropic and isotropic directions is rather weak. This is definitely the case for jellium slabs, which pro-

vide a guideline for such kind of systems. Thin jellium slabs and related systems, like excitons in quantum

wells, are often considered as purely two-dimensional systems. For certain applications this is not really

appropriate from a physical point of view. Nevertheless, we can use these results as a guiding principle

for the construction of a tensor product basis. This is similar to the highly successful linear combination
of atomic orbitals approach in molecular physics. We further follow along this line for the construction

of the Fock matrix, which comprises the most expensive part of a HF calculation. The physical insight con-

cerning the homogeneous directions of the system has been expressed in terms of intermediate exchange

and Coulomb integrals. These integrals do not change during the self-consistent solution of the HF equa-

tion. As a consequence, we can essentially restrict the necessary update of the Fock matrix, during each

iteration, to the anisotropic part of the orbitals. The intermediate integrals have sparse representations

in a wavelet basis, which enable an efficient computation of the Fock matrix.

Although, the present work is in particular limited to the HF approach, it also has some consequences
for post HF methods. Accurate HF wavefunctions usually serve as a starting point for many-particle meth-

ods, where correlated wavefunctions are expressed through correlation operators acting on a Slater deter-

minant. Furthermore, we want to emphasize that our numerical techniques, originally developed for the

exchange part of the Fock operator, provide a foundation for the evaluation of more general integrals, re-

quired by many-particle methods, as it has been discussed in [19]. Another possible application of HF wave-

functions are QMC calculations, where Slater determinants form a part of the trial wavefunction. This

seems to be especially promising with respect to the high demands on the numerical accuracy of trial wave-

functions in QMC calculations for strongly anisotropic systems.
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Appendix A. Basic notions of multiresolution analysis

The purpose of this appendix is to provide some basic definitions and properties of wavelets in order to

make the paper fairly self-contained. We give a brief discussion of multiresolution analysis in one dimen-

sion and provide some basic notions for the multi-dimensional case. For further details the reader is re-

ferred e.g. to Refs. [10,11,22,38], which present excellent introductions into the subject. Multiresolution

analysis leads to a decomposition of the Hilbert space L2ðRÞ into an infinite sequence of ascending sub-

spaces � � � � V j�1 � V j � V jþ1 � � � �, where the index j runs over all integers. The union of these subspaces
¨j Vj is dense in L2ðRÞ. On each subspace Vj, the mother scaling function u(x) provides a basis
uj;aðxÞ :¼ 2j=2uð2jx� aÞ ðA:1Þ
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via the operations of dilation and translation. The dilation factor 2j scales the size of the basis functions,

which means that with increasing j, the uj,a provide a finer resolution in L2. An explicit embedding of Vj

into the larger space Vj + 1 is given by the refinement relation
uj;aðxÞ ¼ 21=2
X
b

hb�2aujþ1;bðxÞ; ðA:2Þ
where the number of filter coefficients ha is finite for the scaling functions used in our applications. Wavelet

spaces Wj are defined as complements of Vj in Vj+1, where the corresponding wavelet basis is generated

from a mother wavelet w(x) analogously to Eq. (A.1)
wj;aðxÞ :¼ 2j=2wð2jx� aÞ: ðA:3Þ
A refinement relation similar to Eq. (A.2)
wj;aðxÞ ¼ 21=2
X
b

gb�2aujþ1;bðxÞ; ðA:4Þ
relates the mother wavelet to scaling functions on the next finer level. This construction leads to a hierar-

chical decomposition of L2 ¼ 	l2ZW l into wavelet subspaces Wl [11]. Sometimes it is convenient to use

common symbols for scaling functions and wavelets
wð0Þ
j;a ðxÞ :¼ uj;aðxÞ; wð1Þ

j;a ðxÞ :¼ wj;aðxÞ: ðA:5Þ
We freely adopt to this notation whenever it seems to be beneficial. In a biorthogonal wavelet basis there

exists a sequence of dual spaces ~V j; ~W j, which satisfy the orthogonality relations ~W j ? V j and ~V j ? W j.

The corresponding dual wavelets ~wj;a :¼ 2j=2~wð2jx� aÞ and scaling functions ~uj;a :¼ 2j=2~uð2jx� aÞ provide
a biorthogonal basis in L2
huj;aj~uj;bi ¼ da;b; hwj;aj~wl;bi ¼ dj;lda;b: ðA:6Þ
The sparsity of wavelet approximations is due to the vanishing moment property
Z
dxxkwðxÞ ¼ 0 for k ¼ 0; . . . ; n� 1: ðA:7Þ
This property leads to a vast decay of wavelet coefficients for smooth functions with respect to the level of

refinement. Furthermore, it enables sparse representations of singular kernel functions, like Coulomb

potentials, that satisfy the asymptotic smoothness condition [7,8].
Isotropic two- and three-dimensional wavelets have been used for the construction of basis functions in

the parallel directions and for the wavelet representation of Ewald potentials, respectively. These wavelets

are obtained by taking mixed tensor products of univariate wavelets wj,a and scaling functions uj,a on the

same level j. In the two-dimensional case, beside scaling functions
cð0Þj;ak
ðrkÞ ¼ uj;a2ðyÞuj;a3ðzÞ; ðA:8Þ
there are three different types of isotropic wavelets
cð1Þj;ak
ðrkÞ ¼ wj;a2ðyÞuj;a3ðzÞ;

cð2Þj;ak
ðrkÞ ¼ uj;a2ðyÞwj;a3ðzÞ;

cð3Þj;ak
ðrkÞ ¼ wj;a2

ðyÞwj;a3
ðzÞ:

ðA:9Þ
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Correspondingly in the three-dimensional case, isotropic scaling functions and wavelets are given by
cð0Þj;a ðrÞ ¼uj;a1ðxÞuj;a2ðyÞuj;a3ðzÞ; ðA:10Þ
cð1Þj;a ðrÞ ¼wj;a1

ðxÞuj;a2ðyÞuj;a3ðzÞ;

..

.

cð4Þj;a ðrÞ ¼wj;a1ðxÞwj;a2ðyÞuj;a3ðzÞ;

..

.

cð7Þj;a ðrÞ ¼wj;a1ðxÞwj;a2ðyÞwj;a3ðzÞ:
According to this scheme, the scaling functions cð0Þj;a and wavelets cð1Þj;a ; c
ð2Þ
j;a � � � belong to well defined levels j.

However, the various types of isotropic wavelets might have otherwise different properties. Sometimes it

becomes necessary to specify for an isotropic wavelet cðpÞj;a , the type of function wðpiÞ
j;ai in a specific direction.

According to our notation (A.5), pi = 0,1, depending whether there is a scaling function or a wavelet.

Filter coefficients for multiscale relations of bilinear forms are required in Eqs. (53) and (54). These coef-

ficients can be obtained from the two-scale relations
Z
dx1 dx2w

ðpÞ
j;a ðx1Þf ðjx1 � x2jÞwðqÞ

j;0 ðx2Þ ¼
X
b

ðp;qÞHb�2a

Z
dx1 dx2w

ð0Þ
jþ1;bðx1Þf ðjx1 � x2jÞwð0Þ

jþ1;0ðx2Þ; ðA:11Þ
with
ð0;0ÞHb :¼ 2
X
c

hbþchc; ð1;0ÞHb :¼ 2
X
c

gbþchc; . . . ðA:12Þ
Recursive application of the two-scale relations
ðp;qÞH 2
b ¼
X

c
ðp;qÞHc

ð0;0ÞHb�2c; ðA:13Þ
ðp;qÞH 3

b ¼
X

c
ðp;qÞH 2

c
ð0;0ÞHb�2c;

..

.

provides multiscale filter coefficients to arbitrary fine levels.
Appendix B. Refinement relations for periodic wavelets and scaling functions

In order to complete our discussion of supercell wavelets in Section 2.1, we provide here refinement rela-

tions for periodically extended supercell wavelets and scaling functions. Since from a formal point of view,

the refinement relations for wavelets and scaling functions are completely equivalent, we restrict ourselves

to scaling functions. The ordinary two-scale refinement relation for scaling functions (A.2) extends to the

periodic setting for the cases j + ui P 0 and j + ui < 0, differently. Here ui relates to the unit cell lattice vec-

tors (4). To simplify our notation, we drop the directional index i in the following. In the case j + u P 0,

straightforward application of Eq. (A.2), together with tj,n = tj + 1,n, Mj = Mj + 1 and Xj = Xj + 1, cf. Eqs.
(11)–(13), yields the refinement relation for periodically extended supercell scaling functions
Ruj
j;aðxÞ ¼ 21=2

X
b2Z

hb�2aRuj
jþ1;bðxÞ ¼ 21=2

X
c2Kjþ1

X
m2Z

h2jþ1tjþ1;mþc�2ae
�ijtjþ1;m

 !
Ruj

jþ1;cðxÞ

¼ 21=2
X
c2Kjþ1

hjjþ1;c�2aRuj
jþ1;cðxÞ: ðB:1Þ
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Here we have introduced periodic filter coefficients
hjj;a ¼
X
m2Z

h2jtj;mþae
�ijtj;m ; ðB:2Þ
in order to obtain a compact notation. The corresponding relation in the case j + u < 0 is of the form
Ruj
j;0ðxÞ ¼ hj

0

jþ1;0Ruj0

jþ1;0ðxÞ þ hjjþ1;0Ruj
jþ1;0ðxÞ; ðB:3Þ
where a linear combination of two supercell scaling functions appears, which belong to two different wave

vectors
j0 ¼ 2p
2uN

nþMjþ1

2

� �
and j ¼ 2p

2uN
n: ðB:4Þ
This is due to the fact that the first wave vector coincides with the second after reduction to the first BZ on
level j, i.e. j 0|j = j. Furthermore we have used tj,n = 2tj+1,n and Mj+1 = 2Mj for the derivation of the refine-

ment relation (B.3), cf. Eqs. (11)–(13).
Appendix C. Symmetry relations for symmetric biorthogonal wavelet bases

The usage of symmetric biorthogonal wavelet bases for the representation of translational invariant

kernel functions, like interaction potentials, allows for some additional savings with respect to storage
requirements. In order to employ symmetry, we have to bear in mind that seven different types of isotropic

three-dimensional wavelets exist. Each type is centred on a regular lattice. These lattices, however, are

shifted against one another. The consequences for the inversion symmetry of wavelet matrix elements of

translational invariant kernel functions are most easily demonstrated for the Coulomb interaction. In

the case of symmetric scaling functions and wavelets, the Coulomb matrix elements
cðpÞj;a
1

r12

����
����cðqÞj;0

	 

:¼
Z
R3

Z
R3

d3r1 d
3r2 c

ðpÞ
j;a ðr1Þ

1

jr1 � r2j
cðqÞj;0 ðr2Þ; ðC:1Þ
satisfy inversion relations
cðpÞj;�a

1

r12

����
����cðqÞj;0

	 

¼ cðpÞj;aþsðp;qÞ

1

r12

����
����cðqÞj;0

	 

; ðC:2Þ
with shift vectors
sðp;qÞi :¼

0 if ðpi; qiÞ ¼ ð0; 0Þ;
1 if ðpi; qiÞ ¼ ð0; 1Þ;

�1 if ðpi; qiÞ ¼ ð1; 0Þ;
0 if ðpi; qiÞ ¼ ð1; 1Þ;

8>>><
>>>:

; ðC:3Þ
depending on the specific combinations of wavelets and scaling functions in each direction. The inversion
relations hold for each component of the vector a separately. Therefore, the storage requirement for Cou-

lomb matrix elements are reduced by a factor of eight.

In order to make use of symmetry for the Ewald potential, we have to consider a combination of trans-

lation and inversion symmetry. The translational symmetry of the Ewald potential manifests itself in the

relation
UEwaldðr1; r2Þ ¼ UEwaldðr1 þ Rn; r2Þ ¼ UEwaldðr1; r2 þ RnÞ; ðC:4Þ
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which immediately yields the corresponding relation for the wavelet matrix elements
hcðpÞ
j;aþ2jRn

jUEwaldjcðqÞj;0 i ¼ hcðpÞj;a jUEwaldjcðqÞj;0 i: ðC:5Þ
According to Eq. (C.5), we can substitute �~ai ! ai with ~ai ¼ 2jþuiN i � ai in the Ewald matrix elements and
use Eq. (C.2) to obtain the symmetry relation
hcðpÞj;a jUEwaldjcðqÞj;0 i ¼ hcðpÞj;�~ajUEwaldjcðqÞj;0 i ¼ hcðpÞj;~aþsðp;qÞ
jUEwaldjcðqÞj;0 i: ðC:6Þ
Therefore, Ewald matrix elements are invariant with respect to the substitution
~aþ sðp;qÞ ! a: ðC:7Þ
Let us assume that
2jþui�1Ni þ sðp;qÞi=2 < ai < 2jþuiN i: ðC:8Þ
From the definition of ~ai and inequality (C.8), we obtain
sðp;qÞi < ~ai þ sðp;qÞi < 2jþui�1Ni þ sðp;qÞi=2: ðC:9Þ
As a consequence of this inequality only Ewald matrix elements with
maxðsðp;qÞi ; 0Þ 6 ai 6 2jþui�1Ni þ sðp;qÞi=2 ðC:10Þ
have to be calculated and stored. Due to translation–inversion symmetry, the storage requirements for

Ewald potentials reduce by a factor of eight.
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